Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High-harmonic generation (HHG) has been established as a powerful tool for studying structure and dynamics of quantum systems in gas and solid phases. To date, only a few studies have extended HHG spectroscopy to liquids, and much remains unresolved concerning the information that can be extracted from HHG spectra about the local liquid environment and the potential of HHG as a nonlinear probe of solvation dynamics. In this work, we investigate HHG in liquid binary solutions consisting of mixtures of aromatic benzene derivatives solvated in methanol. We observe evidence of a localized solvation structure that is imprinted on the harmonic spectra in the form of a strongly suppressed harmonic order, and an overall reduction of the total harmonic yield. We characterize this behavior as a function of laser parameters, concentration, and other halogenated benzene derivatives in methanol solution. Guided by theory, we interpret the results in terms of a localized solvation shell that is formed in specific solutions and acts like a local scattering barrier in the HHG process. This work demonstrates the potential of high-harmonic spectroscopy in liquids to extract detailed information about the structure and dynamics of solvation while expanding our understanding of the fundamental mechanism of HHG in systems with short-range order.more » « lessFree, publicly-accessible full text available November 25, 2026
-
Abstract Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution. Moreover, we report a delay-dependent even-order harmonic frequency shift that is proportional to the time derivative of the THz field. This suggests a limitation of the static symmetry breaking interpretation and implies that the resultant attosecond bursts are aperiodic, thus providing a frequency domain probe of attosecond transients while opening opportunities in precise attosecond pulse shaping.more » « less
An official website of the United States government
